Regulation of L-cystine transport and intracellular GSH level by a nitric oxide donor in primary cultured rabbit conjunctival epithelial cell layers.
نویسندگان
چکیده
PURPOSE Metabolism and transport of cysteine are critical for maintenance of the intracellular glutathione (GSH) level. In this study, transport mechanisms of L-cystine and regulation of GSH biosynthesis in the absence or presence of NO-induced oxidant stress were investigated in primary cultured rabbit conjunctival epithelial cells (RCECs). METHODS RCECs were grown in membrane filters to exhibit tight barrier properties. Uptake and transepithelial transport of L-cystine were determined in the presence or absence of extracellular Na(+). Uptake was determined at 10 minutes after (14)C-L-cystine instillation into apical (a) or basolateral (b) bathing fluid. The effect of nitric oxide (NO) on L-cystine uptake, cellular GSH level, and expression level of two subunits of the rate-limiting enzyme gamma-glutamylcysteine synthetase (GCS) was examined after a 24-hour incubation of primary cultured RCECs with an NO donor, S-nitroso-N-acetylpenicillamine (SNAP; N-acetyl-3-(nitrosothio)-D-valine. RESULTS Cellular uptake of L-cystine by RCECs occurred through both Na(+)-dependent and -independent mechanisms. Uptake from apical fluid was higher than that from basolateral fluid, except for the highest concentration of L-cystine tested (200 microM). Transepithelial permeability (P(app)) of L-cystine (at 2.5 microM) was three times higher in the a-to-b direction than in the b-to-a direction in the presence of Na(+), whereas the reverse was true in the absence of Na(+). Na(+)-dependent L-cystine uptake from apical fluid was significantly elevated in primary cultured RCECs treated for 24 hours with various concentrations (0.1-2.0 mM) of SNAP, with maximum uptake observed at 1 mM. A similar pattern of SNAP-induced increase of Na(+)-independent L-cystine uptake from apical fluid was observed, whereas no significant difference was observed for basolateral uptake. Concomitantly, a significant elevation of intracellular GSH (up to fivefold versus the control) was recorded, with the highest increase occurring at 0.1 to 0.25 mM SNAP. A parallel increase in the expression levels of both catalytic and regulatory subunits of GCS was observed by Western blot analysis of lysates from RCECs treated with 0.25 mM SNAP for 24 hours. CONCLUSIONS L-Cystine is transported by both Na(+)-dependent and -independent amino acid transport systems in RCECs. At low substrate concentrations, L-cystine uptake was higher from apical than basolateral fluid. Permeability studies indicated net absorption of L-cystine across RCECs. SNAP caused significant increases in both L-cystine uptake and intracellular GSH level, which occurred concomitantly with elevation of both catalytic and regulatory subunits of GCS. Understanding sulfur amino acid precursor-dependent cellular mechanisms of GSH homeostasis would be of value in devising GSH-based treatment for conjunctival or other ocular disorders.
منابع مشابه
Comparison of Ultra Structure and Gene Expression of Cultured Limbal Stem Cells and Fresh Conjunctival, Limbal and Corneal Tissues
Purpose: The present study intends to show the characteristics of cultured limbal stem cell (CLSCs) and to compare them with normal Conjunctival (C), Limbal (L) and Cornea (K) tissues. Materials and Methods: The expressions of a set of genes potentially involved in differentiation and stemness function of limbal stem cells were assessed in freshly prepared limbal, corneal, and conjunctival tis...
متن کاملNet glutathione secretion across primary cultured rabbit conjunctival epithelial cell layers.
PURPOSE Metabolism and transport of glutathione (GSH), the endogenous thiol antioxidant, in conjunctival tissue to date are poorly understood. The purpose of the present study was to define transport characteristics of GSH in primary cultured rabbit conjunctival epithelial cells (RCECs). METHODS RCECs were grown on membrane filters to exhibit tight barrier properties (transepithelial electric...
متن کاملACELL Apr. 45/4
Li, Hongfei, Zermeena M. Marshall, and A. Richard Whorton. Stimulation of cystine uptake by nitric oxide: regulation of endothelial cell glutathione levels. Am. J. Physiol. 276 (Cell Physiol. 45): C803–C811, 1999.—Nitric oxide (NO) is known to produce some of its biological activity through modification of cellular thiols. Return of cellular thiols to their basal state requires the activity of ...
متن کاملRole of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit
Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...
متن کاملStimulation of cystine uptake by nitric oxide: regulation of endothelial cell glutathione levels.
Nitric oxide (NO) is known to produce some of its biological activity through modification of cellular thiols. Return of cellular thiols to their basal state requires the activity of the GSH redox cycle, suggesting important interactions between NO signaling and regulation of cellular redox status. Because continuous exposure to NO may lead to adaptive responses in cellular redox systems, we in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 44 3 شماره
صفحات -
تاریخ انتشار 2003